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Abstract
We obtain a new multiple integral representation for the spin–spin correlation
functions of the XXZ spin- 1

2 infinite chain. We show that this representation is
closely related with the partition function of the six-vertex model with domain
wall boundary conditions.

PACS numbers: 71.45.G, 75.10.Jm, 11.30.Na, 03.65.Fd

1. Introduction

The calculation of the correlation functions of the spin chains and, in particular, their
asymptotic analysis are very important problems in the field of quantum integrable models.
In this paper, we consider one of the most representative examples of the lattice integrable
models: the spin- 1

2 Heisenberg chain. This model describes spin- 1
2 particles situated in the

sites of a one-dimensional lattice, interacting with their nearest neighbours,

H =
M∑

m=1

(
σx

mσ x
m+1 + σy

mσ
y

m+1 + �
(
σ z

mσ z
m+1 − 1

))
. (1.1)

Here, � is the anisotropy parameter and σ
x,y,z
m are Pauli matrices associated with each site

of the chain. This Hamiltonian acts in a tensor product of M two-dimensional local quantum
spaces Hm.6 We imposed here the periodic boundary conditions

σa
M+1 = σa

1 .

5 On leave of absence from the Steklov Institute at St Petersburg, Russia.
6 All the results of the present paper (with slight modifications) can also be applied to the XXZ model with external
magnetic field. However, for simplicity reasons, we consider here only the case of zero magnetic field.
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For simplicity reasons, we consider here only the case when the number of sites M
is even.

Our main goal is to obtain some explicit expressions for the two-point spin–spin correlation
functions for the infinite chain at zero temperature. They can be defined as ground-state mean
values of products of local operators:

gzz(m) = 〈ψg|σ z
m+1σ

z
1 |ψg〉, (1.2)

g+−(m) = 〈ψg|σ +
m+1σ

−
1 |ψg〉, (1.3)

where |ψg〉 is the ground state for the Hamiltonian (1.1).
To solve this model different techniques can be used. Originally, the energy levels were

calculated in 1958 by means of the coordinate Bethe ansatz [1–4]. Later (in 1979), an
algebraic version of the Bethe ansatz (or quantum inverse scattering method ) was introduced
by Faddeev, Sklyanin and Takhtajan [5]. Both methods permit one to calculate the energy
level and to obtain representations for the eigenstates and, in particular, for the ground state.
However, for many years, computation of the correlation functions has been possible only for
the free-fermion point � = 0 [6–10].

First explicit results for more general situations, namely for the massive antiferromagnetic
regime (� > 1), were obtained in 1992 by means of a completely different approach (q-vertex
operator method) by the Kyoto group [11, 12]. In 1996, a similar conjecture was written for
the critical regime of the XXZ chain (−1 < � � 1) [13]. The correlation functions were
represented as multiple integrals with number of integrals equal to the distance. These results
were confirmed (and generalized for the XXZ chain in a constant external magnetic field) in
1999 [14, 15] by means of the algebraic Bethe ansatz and resolution of the quantum inverse
problem [14, 16]. This new approach permitted one to better understand the results for the
correlation functions and to obtain an asymptotic formula for a very particular correlation
function (the so-called emptiness formation probability, which is the probability of finding
a ferromagnetic string of length m in the ground state) [17, 18], and even an explicit result
for this quantity for the point � = 1

2 [19]. Recently, several important new results for
the correlation functions of the spin chains were obtained in a different way, from the
q-KZ equations. It was shown that the multiple integrals can be separated and computed
for the XXX chain [20]. Later, similar results were obtained for the XXZ [21] and XYZ [22]
cases. This approach permits one to calculate the correlation functions for short distances
[23] but it seems to be rather difficult to apply this method for the study of the long distance
behaviour.

It is necessary to underline that the correlation functions of the XXZ chain calculated in
[11, 15, 21] are not the two-point functions defined by (1.2) and (1.3) but they are the so-called
‘elementary blocks’ (i.e., the mean values of products of local elementary 2 × 2 matrices with
only one non-zero entry in consecutive sites). The two-point functions can be expressed as
sums of these elementary blocks but the number of terms in this sum grows exponentially
with respect to the distance (2m+1), which is very inconvenient for the computation of the long
distance asymptotics. The main goal of the present paper is to reduce our expression for the
two-point functions to a sum of m + 1 terms and thus to obtain a compact and manageable
representation for it. One way to solve this problem was proposed in [24], and here we present
an alternative way to simplify the expressions for the spin–spin correlation functions. The
advantage of this alternative approach is a simpler final form of the terms (each of them contains
the same number of integrals and there is no need to introduce any additional integrations).
It is also important to mention that each term in the final sum has a form very similar to the
symmetric representation for the emptiness formation probability, obtained in [24], and thus
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there is a possibility to use the saddle point method similarly to [17] for its rough asymptotic
analysis.

The paper is organised as follows. In the next section, we give a short reminder of the
algebraic Bethe ansatz solution of the XXZ chain (following [5]) and an overview of our way
to calculate the elementary blocks following our paper [15]. In section 3, we introduce the
generating function of the correlation functions of the third components of spin and we show
how to express this quantity in terms of the elementary blocks. We also explain how this
function is related with the two-point function (1.2). In section 4, we prove our main result
for the generating function and show how a similar technique can be applied directly to the
correlation functions (1.3) and (1.2). A further re-summation is performed in section 5, which
permits us to reduce the result to only one term. In the last section, we show how this method
can be applied in the free-fermion point to obtain the known results for the two-point functions
and their asymptotics.

2. XXZ chain: algebraic Bethe ansatz and elementary blocks

First, we have to determine the ground state of the Hamiltonian (1.1). In the framework of
the algebraic Bethe ansatz [5], it can be described in terms of the generalized creation and
annihilation operators which can be obtained as elements of the quantum monodromy matrix.
This matrix is completely defined by the R-matrix of the model which, for the XXZ chain, is
the usual trigonometric solution of the Yang–Baxter equation, acting in the tensor product of
two auxiliary spaces V1 ⊗ V2, Vi = C2:

R(λ) =




1 0 0 0
0 sinh λ

sinh(λ−iζ )
− i sin ζ

sinh(λ−iζ )
0

0 − i sin ζ

sinh(λ−iζ )
sinh λ

sinh(λ−iζ )
0

0 0 0 1


 , (2.1)

the parameter ζ being related to the anisotropy parameter7

� = cos ζ.

The monodromy matrix can be constructed as a product of R-matrices and can be written as a
2 × 2 matrix in the auxiliary space:

T (λ) = R0M

(
λ − ξN + i

ζ

2

)
· · · R01

(
λ − ξ1 + i

ζ

2

)
=

(
A(λ) B(λ)

C(λ) D(λ)

)
[0]

. (2.2)

Here, {ξ} is a set of arbitrary inhomogeneity parameters and the R-matrices R0k act in the
tensor product of the auxiliary space V0 and the local quantum space Hk . The operator entries
of the monodromy matrix A,B,C and D act in the same quantum space H as the Hamiltonian
of the XXZ chain. The commutation relations of these operators can be obtained from the
Yang–Baxter equation:

R12(λ − µ)T1(λ)T2(µ) = T2(µ)T1(λ)R12(λ − µ). (2.3)

From this relation, one can also easily see that traces of the monodromy matrix taken in the
auxiliary space (transfer matrices) commute for any values of the spectral parameters,

[A(λ) + D(λ),A(µ) + D(µ)] = 0. (2.4)

7 We give all the formulae in this paper for the critical regime (−1 < � < 1) of the XXZ chain, but it will be clear
that similar computations can be done for the massive regime (� > 1) and for the XXX chain (� = 1).
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The Hamiltonian of the XXZ model can be reconstructed from the transfer matrix in the
homogeneous limit when all the inhomogeneity parameters are equal: ξk = 0,

H = c
∂

∂λ
log(A(λ) + D(λ))

∣∣∣∣
λ=0

+ const. (2.5)

It means in particular that the Hamiltonian commutes with the transfer matrix for any value
of the spectral parameter,

[H,A(λ) + D(λ)] = 0,

and the eigenstates of the transfer matrix (for arbitrary λ) are eigenstates of the Hamiltonian.
To construct the eigenstates of the transfer matrix one can use the operators B(λ) as

creation operator (and operators C(λ) as annihilation operators). This is possible if there
exists a reference state |0〉 which is an eigenstate of the operators A(λ) and D(λ) and is
annihilated by the operators C(λ) for any value of λ. For the XXZ chain such a state exists and
it is the ferromagnetic state with all the spins up. Now other eigenstates can be constructed
by the action of operators B on this ferromagnetic state. More precisely, using the Yang–
Baxter algebra (2.3), one can show that the eigenstates of the transfer matrix (and hence of the
Hamiltonian in the homogeneous case) can be constructed in the form

|ψ〉 = B(λ1) · · · B(λN)|0〉, (2.6)

where the spectral parameters {λj } satisfy the Bethe equations,

M∏
m=1

sinh
(
λj − ξm + i ζ

2

)
sinh

(
λj − ξm − i ζ

2

) ·
N∏

k=1
k �=j

sinh(λj − λk − iζ )

sinh(λj − λk + iζ )
= 1, j = 1, . . . , N. (2.7)

The Bethe equations are very difficult to solve for a finite chain. However, it can be shown
that the ground state of the XXZ chain is described by this procedure in the homogeneous
case with N = M

2 and can be specified by a special choice of integers in the logarithmic form
of the Bethe equations:

p0(λj ) − 1

M

M/2∑
k=1

φ(λj − λk) = −π

2
− π

M
+

2πj

M
, j = 1, . . . ,

M

2
, (2.8)

where the bare momentum p0(λ) and the ‘scattering phase’ φ(λ) are defined as

p0(λ) = i log
sinh

(
λ + i ζ

2

)
sinh

(
λ − i ζ

2

) φ(λ) = i log
sinh(λ + iζ )

sinh(λ − iζ )
.

This state is the ground state of the XXZ chain in the homogeneous case, but even for the
inhomogeneous model one can define a Bethe state with this choice of integers in the right-
hand side of the logarithmic Bethe equations. In the calculation of the correlation functions,
it will be convenient to consider such a state first and to take the homogeneous limit only in
the final result.

Even for the ground state there is no way in a generic situation to solve the Bethe equations
explicitly. However, in the thermodynamic limit M → ∞, this state can be described in a
very simple way in terms of the density of rapidities. More precisely, in the thermodynamic
limit, for any smooth bounded function f (λ), any sum over the Bethe roots corresponding to
the ground state can be replaced by the following integral:

1

M

M/2∑
j=1

f (λj ) =
∫ ∞

−∞
dλ ρ(λ)f (λ) + o

(
1

M

)
, (2.9)
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where the density function ρ(λ) can be obtained from a simple integral equation which replaces
in the thermodynamic limit the Bethe equations,

ρ(λ) +
∫ ∞

−∞
dµρ(µ)K(λ − µ) = 1

2π
p′

0(λ), (2.10)

where the kernel K(λ) is a derivative of the ‘scattering phase’

K(λ) = 1

2π
φ′(λ) = 1

2π

sin(2ζ )

sinh(λ + iζ ) sinh(λ − iζ )
. (2.11)

This equation can be easily solved by Fourier transform,

ρ(λ) = 1

2ζ cosh
(

π
ζ
λ
) . (2.12)

This information about the ground state is sufficient for the calculation of the correlation
functions in the thermodynamic limit.

The first problem which arises when one tries to calculate ground-state mean values of
products of local operators in the framework of the algebraic Bethe ansatz is the fact that
creation (annihilation) operators B(C) are non-local and do not permit a simple expansion in
terms of spin operators. Thus, it is rather difficult to establish commutation relations between
these two types of objects. In our paper [14], we proposed a way to solve this problem by
expressing the local operators in terms of the monodromy matrix elements (hence solving the

quantum inverse problem). The expression for the local elementary 2 × 2 matrices E
ε′
mεm

m with
only one non-zero entry,

Eε′ε
jk = δjε′δkε,

can be written in a very simple form

E
ε′
m,εm

m =
m−1∏
k=1

(A + D)

(
ξk − i

ζ

2

)
Tεm,ε′

m

(
ξm − i

ζ

2

) m∏
k=1

(A + D)−1

(
ξk − i

ζ

2

)
. (2.13)

It is easy to see that every local operator is expressed as a monodromy matrix element dressed
with transfer matrices. In particular, the operator σ +

m is expressed as the dressed operator
C

(
ξm − i ζ

2

)
, σ−

m as B
(
ξm − i ζ

2

)
and σ z

m as A
(
ξm − i ζ

2

)−D
(
ξm − i ζ

2

)
. It is important to mention

that this solution is very convenient to calculate the ground-state mean values as the ground
state is an eigenstate of the transfer matrix,(

A

(
ξk − i

ζ

2

)
+ D

(
ξk − i

ζ

2

))
|ψg〉 =

M/2∏
j=1

sinh
(
λj − ξk − i ζ

2

)
sinh

(
λj − ξk + i ζ

2

) |ψg〉.

Now the correlation functions can be expressed only in terms of the monodromy matrix
elements. The first type of object we can consider using this approach are the ‘elementary
blocks‘, i.e., the ground-state mean values of products of the elementary local matrices in m
consecutive sites,

Fm({εj , ε
′
j }) = 〈ψg|

m∏
j=1

E
ε′
j ,εj

j |ψg〉. (2.14)

Using the solution of the quantum inverse problem such quantities can be expressed only in
terms of the monodromy matrix elements,

Fm({εj , ε
′
j }) =


 m∏

k=1

M/2∏
j=1

sinh
(
λj − ξk + i ζ

2

)
sinh

(
λj − ξk − i ζ

2

)



× 〈0| ∏M/2
j=1 C(λj )

∏m
k=1 Tεk,ε

′
k

(
ξk − i ζ

2

)∏M/2
j=1 B(λj )|0〉

〈0| ∏M/2
j=1 C(λj )

∏M/2
j=1 B(λj )|0〉

, (2.15)
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(it is important to mention that operators B(λ) are not normalized and thus to obtain the mean
value, one should divide the rhs by the norms of the Bethe vector corresponding to the ground
state). Now we can use the Yang–Baxter algebra, i.e., the commutation relations between the
monodromy matrix elements. In particular, we can act with the monodromy matrix elements
on the dual Bethe state constructed by the actions of operators C(λ).

It is easy to see that after acting with all the operators in (2.15) on the dual Bethe state
one obtains again a sum of states constructed by the action of the operators C(λ) on the
dual ferromagnetic state (but the spectral parameters no longer satisfy the Bethe equations).
Then, using the Gaudin–Korepin formula for the norm of the Bethe states [27–29], and the
determinant representation for the scalar products of a Bethe state with an arbitrary state
[30, 14], one can express the correlation functions (2.14) as sums of determinants. Now we
have an explicit formula for the elementary blocks in term of the ground-state solution of the
Bethe equations. In the thermodynamic limit, this sum can be simplified as all the sums over
the Bethe roots can be replaced by integrals with density. The final result for any elementary
block can be written as multiple integrals

Fm({εj , ε
′
j }) = 1∏

j>k sinh(ξj − ξk)

∫ ∞

−∞
dλ1 · · ·

×
∫ ∞

−∞
dλm F({λk}, {ξj , εj , ε

′
j }) detmS({λj }, {ξk}). (2.16)

Here, the m × m matrix S does not depend on the choice of local operators and is defined
uniquely by the ground state. Its elements can be written in terms of the density function
(2.12)

Sjk = ρ(λj − ξk). (2.17)

The algebraic partF({λk}, {ξj , εj , ε
′
j }) arises from the commutation relation of the monodromy

matrix elements and does not depend on the ground state. The expression for this function for
the most general case can be found in the paper [15]. Here, for the calculation of the two-point
functions we need only some particular blocks and we will give an explicit expression for the
corresponding algebraic parts in the next sections.

Once the elementary blocks are calculated, any correlation function can be written as a
sum of such multiple integrals. However, the sums which appear for the two-point functions
contain a number of terms that grows exponentially with the distance and in such a form cannot
be used for the asymptotic analysis. For example, using the solution of the quantum inverse
problem for the correlation functions of the third components of spin gzz(m), we obtain the
following expression:

gzz(m) =

m+1∏

k=1

M/2∏
j=1

sinh
(
λj − ξk + i ζ

2

)
sinh

(
λj − ξk − i ζ

2

)

 〈ψg|

(
A

(
ξ1 − i

ζ

2

)
− D

(
ξ1 − i

ζ

2

))

×

 m∏

j=2

(
A

(
ξj − i

ζ

2

)
+ D

(
ξj − i

ζ

2

))


×
(

A

(
ξm+1 − i

ζ

2

)
− D

(
ξm+1 − i

ζ

2

))
|ψg〉. (2.18)

It is easy to see that this function can be rewritten as a sum of 2m+1 elementary blocks.
Similarly, for the function g+−(m), one has
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g+−(m) =

m+1∏

k=1

M/2∏
j=1

sinh
(
λj − ξk + i ζ

2

)
sinh

(
λj − ξk − i ζ

2

)

 〈ψg|C

(
ξ1 − i

ζ

2

)

×

 m∏

j=2

(
A

(
ξj − i

ζ

2

)
+ D

(
ξj − i

ζ

2

))
 B

(
ξm+1 − i

ζ

2

)
|ψg〉, (2.19)

and it can be written as a sum of 2m−1 elementary blocks. The main goal of this paper is
to obtain a manageable expression for these correlation functions from the multiple integral
representation for the elementary blocks.

3. Generating function

In this section, we consider the correlation function of the third components of spin gzz(m).
To calculate this function it is convenient to introduce a new object: the generating function

Qm(β) ≡ 〈ψg| exp{βQ1,m}|ψg〉, Q1,m =
m∑

j=1

1

2

(
1 − σ z

j

)
. (3.1)

To obtain the two-point function from the generating function one should take its second
derivative on β and second lattice derivative on m

gzz(m) =
(

2D2
m

∂2

∂β2
− 4Dm

∂

∂β
+ 1

)
Qm(β)

∣∣∣∣
β=0

, (3.2)

where we used the standard definition of the first and second lattice derivatives

Dmf (m) = f (m + 1) − f (m), D2
mf (m) = f (m + 1) − 2f (m) + f (m − 1).

Using the solution of the quantum inverse problem, we can rewrite this quantity in terms of
the monodromy matrix elements:

Qm(β)=

 m∏

k=1

M/2∏
j=1

sinh
(
λj − ξk + i ζ

2

)
sinh

(
λj − ξk − i ζ

2

)

 〈ψg|


 m∏

j=1

(
A

(
ξj − i

ζ

2

)
+ eβD

(
ξj − i

ζ

2

))
 |ψg〉.

(3.3)

The generating function can be expressed as a sum of 2m elementary blocks containing only
diagonal elements of the monodromy matrix (operators A

(
ξ − i ζ

2

)
and D(ξ − i ζ

2 )). For such
elementary blocks, the algebraic part can be written in a factorized form, as a product of
‘two-particle contributions’,
 m∏

k=1

M/2∏
j=1

sinh
(
λj − ξk + i ζ

2

)
sinh

(
λj − ξk − i ζ

2

)

 〈ψg|Ta1a1

(
ξ1 − i

ζ

2

)
· · · Tamam

(
ξm − i

ζ

2

)
|ψg〉

= 1∏
j<k

sinh(ξj − ξk)

∫ ∞

−∞
dλ1 · · ·

∫ ∞

−∞
dλm detmS({λk}, {ξj })

×
∏
j>k

sinh(λj − ξk + iεj ζ ) sinh(λk − ξj − iεkζ )

sinh(λj − λk + i(εj + εk)ζ )
, (3.4)

where numbers εj = ± 1
2 depend on the choice of the corresponding monodromy matrix

elements εj = 3
2 − aj .
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It is clear that the elementary blocks with fixed number of operators of each type have
a rather similar structure. Thus, it is quite natural to put together the terms with the same
number of operators D and to represent the generating function as power series on eβ ,

Qm(β) =
m∑

s=0

esβFs(m). (3.5)

The main result of this paper is a simple and compact formula for the terms Fs(m). This
function can be expressed in terms of elementary blocks,

Fs(m) =

 m∏

k=1

M/2∏
j=1

sinh
(
λj − ξk + i ζ

2

)
sinh

(
λj − ξk − i ζ

2

)



×
∑

a1+···+am−m=s

〈ψg|Ta1a1

(
ξ1 − i

ζ

2

)
· · · Tamam

(
ξm − i

ζ

2

)
|ψg〉, (3.6)

and hence the sums over all possible positions of operators D and A also can be written as
multiple integrals

Fs(m) =
∏
j<k

1

sinh(ξj − ξk)

∫ ∞

−∞
dλ1 · · ·

∫ ∞

−∞
dλmGs(m, {λj }|{ξk}) detmS({λj }, {ξk}), (3.7)

where the function Gs(m, {λj }|{ξk}) under the integrals is a sum over the permutations σ of
the set 1, . . . , m

Gs(m, {λj }|{ξk}) = 1

s!(m − s)!

×
∑

σ

(−1)[σ ]
∏
j>k

sinh(λσ(j) − ξk + iεσ(j)ζ ) sinh(λσ(k) − ξj − iεσ(k)ζ )

sinh(λσ(j) − λσ(k) + i(εσ(j) + εσ(k))ζ )
, (3.8)

where (−1)[σ ] is the sign of the permutation σ , the factorials in the denominator arise from
the additional summations over permutations of the variables of the same type (with εj = 1

2
or εj = − 1

2 ). We set for j � s, εj = − 1
2 and for j > s, εj = 1

2 . We use here a very
important property of the multiple integral representation, namely the fact that the determinant
of densities does not depend on the choice of local operators.

The function Gs(m, {λj }|{ξk}) is a rational function of eλj and eξk . It is by definition
skew-symmetric under the permutations of λ1, . . . , λm. The first property of this function
which we need for our computation is its symmetry on the variables ξj .

Lemma 3.1. The function Gs(m, {λj }|{ξk}) defined by (3.8) is symmetric under the
permutations of the variables ξ1, ξ2, . . . , ξm.

Proof. To prove this lemma it is sufficient to show for any k that

Gs(m, {λj }|ξ1, . . . , ξk, ξk+1, . . . , ξm) − Gs(m, {λj }|ξ1, . . . , ξk+1, ξk, . . . , ξm) = 0.

Consider first this difference for corresponding monomials in (3.8) and note that two terms
differ only in one ‘two-particle contribution’:

∏
j>l
l �=k

sinh(λj − ξl + iεj ζ ) sinh(λl − ξj − iεlζ )

sinh(λj − λl + i(εj + εl)ζ )

m∏
j=k+2

sinh(λj − ξk + iεj ζ ) sinh(λk − ξj − iεkζ )

sinh(λj − λk + i(εj + εk)ζ )

×
(

sinh(λk+1 − ξk + iεk+1ζ ) sinh(λk − ξk+1 − iεkζ )

sinh(λk+1 − λk + i(εk+1 + εk)ζ )
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− sinh(λk+1 − ξk+1 + iεk+1ζ ) sinh(λk − ξk − iεkζ )

sinh(λk+1 − λk + i(εk+1 + εk)ζ )

)

= sinh(ξk − ξk+1)
∏
j>l
l �=k

sinh(λj − ξl + iεj ζ ) sinh(λl − ξj − iεlζ )

sinh(λj − λl + i(εj + εl)ζ )

×
m∏

j=k+2

sinh(λj − ξk + iεj ζ ) sinh(λk − ξj − iεkζ )

sinh(λj − λk + i(εj + εk)ζ )
.

Consider now the same term for the following permutation of the set λ1, . . . , λm:

{λ1, . . . , λk−1, λk+1, λk, λk+2, . . . , λm}.
It is easy to see that for this permutation we obtain exactly the same contribution with an
opposite sign (as the sign of this permutation is −1) and the sum of these two contributions
is zero. Now we should take a sum of such monomials over all possible permutations of the
set λ1, . . . , λm, but as this sum can be split into such pairs with permuted λσ(k) and λσ(k+1) we
immediately obtain that this sum is zero. �

Using this symmetry, we can obtain recursion relations for the function Gs(m, {λj }|{ξk})
in the points λj = ξk − i ζ

2 . It is more convenient now to extract the common denominator and
to consider the function G̃s(m, {λj }|{ξk}):

Gs(m, {λj }|{ξk}) = 1

s!(m − s)!

∏
j>k

sinh(λj − λk)

sinh(λj − λk + i(εj + εk)ζ ) sinh(λj − λk − i(εj + εk)ζ )

× G̃s(m, {λj }|{ξk}).
Directly from this definition, we can establish two evident lemmas:

Lemma 3.2. The function e(m−1)λj G̃s(m, {λj }|{ξk}) is a polynomial function of ε2λj of degree
m − 1.

Lemma 3.3.

G̃0(1, λ1|ξ1) = G̃1(1, λ1|ξ1) = 1.

These lemmas mean that if we obtain recurrence relations for this function in the points
λj = ξk − i ζ

2 then they will define it completely (as it is a polynomial of degree m − 1 defined
in m points). The recursion relation for this function can be written in the following form:

Lemma 3.4. G̃s(m, {λj }|{ξk}) satisfies the following recursion relations:

G̃s(m, {λl}|{ξk})|λj =ξk−i ζ

2
=

m∏
a=1
a �=k

sinh

(
λj − ξa − i

ζ

2

) ∏
a �=j

sinh

(
λa − ξk − i

ζ

2

)

× G̃s(m − 1, λ1, . . . , λj−1, λj+1, . . . , λm|ξ1, . . . , ξk−1, ξk+1, . . . , ξm),

εj = 1

2
(3.9)

G̃s(m, {λl}|{ξk})|λj =ξk−i ζ

2
=

m∏
a=1
a �=k

sinh

(
λj − ξa − i

ζ

2

) ∏
a �=j

sinh

(
λa − ξk − i

ζ

2

)

× G̃s−1(m − 1, λ1, . . . , λj−1, λj+1, . . . , λm|ξ1, . . . , ξk−1, ξk+1, . . . , ξm),

εj = −1

2
(3.10)
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Proof. From lemma 3.1 it is clear that it is sufficient to prove these recursion relations only
for λj = ξ1 − i ζ

2 for εj = 1
2 and for λj = ξm − i ζ

2 for εj = − 1
2 . It is easy to see that only

terms with σ(1) = j (σ(m) = j ) will survive in the sum over permutations (3.8). We obtain a
sum over permutations of the set {λ1, . . . , λj−1, λj+1, . . . , λm} and using the definition of the
function G̃s(m, {λl}|{ξk}), we obtain immediately the recursion relations (3.9), (3.10). �

These recursion relations define completely the function G̃s(m, {λl}|{ξk}). It means that
if we can find a function satisfying lemmas 3.1–3.4 it is the function G̃s(m, {λl}|{ξk}) we need.
Such properties (without dependence on s) were established for the first time by Korepin in
[29] for the partition function of the six-vertex model with domain wall boundary conditions.
In fact the recursion relations obtained here are exactly the same as those of Korepin. The
(unique) solution for these relations, found by Izergin in [31] (which does not depend on s),
satisfies lemmas 3.1–3.4 for any value of s and thus gives the function G̃s(m, {λl}|{ξk}):

Theorem 3.1 (Izergin 1987). The only function satisfying lemmas 3.1–3.4 is

G̃s(m, {λl}|{ξk}) = 1

sinm ζ
Zm({λl}|{ξk}),

where Zm({λ}|{ξ}) is the partition function of the inhomogeneous six-vertex model with domain
wall boundary conditions, which can be written in the following form:

Zm({λl}|{ξk}) =
∏m

j=1

∏m
k=1 sinh

(
λj − ξk + i ζ

2

)
sinh

(
λj − ξk − i ζ

2

)
∏

j>k sinh(λj − λk) sinh(ξk − ξj )
detm M({λl}|{ξk}),

(3.11)

Mjk = sin ζ

sinh
(
λj − ξk + i ζ

2

)
sinh

(
λj − ξk − i ζ

2

) . (3.12)

Proof. To prove this theorem one needs just to verify that the function Zm({λ}|{ξ}) satisfies
all the lemmas 3.1–3.4 for any value of s. Then, as it is a polynomial of degree m − 1
coinciding with another polynomial of the same degree in m points, one can conclude that
these two functions are equal. �

The fact that the function G̃s(m, {λl}|{ξk}) does not depend on s is a very important
peculiarity of this re-summation technique. Hence, the generating function can be written as
a sum of m + 1 multiple integrals of the following form:

Fs(m) = 1

s!(m − s)! sinm ζ

∏
j<k

1

sinh(ξj − ξk)

∫ ∞

−∞
dλ1 · · ·

∫ ∞

−∞
dλm detm S({λ}, {ξ})

×�s
m(λ1, . . . , λm)Zm({λ}|{ξ}), (3.13)

where the only factor depending on s which we denote by �s
m({λ})

�s
m(λ1, . . . , λm) =

s∏
k=1

m∏
j=s+1

1

sinh(λj − λk)

∏
m�j>k>s

sinh(λj − λk)

sinh(λj − λk + iζ ) sinh(λj − λk − iζ )

×
∏

s�j>k�1

sinh(λj − λk)

sinh(λj − λk + iζ ) sinh(λj − λk − iζ )
(3.14)

will appear in all our results.
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Thus, we reduced the number of terms from exponential to polynomial order. This
representation is also interesting because of its unexpected relation with the partition function
of the corresponding inhomogeneous six-vertex model with domain wall boundary conditions.
We also suppose that this representation can be convenient for the asymptotic analysis of the
two-point function gzz(m).

It is also very important to mention that for this re-summation we manipulated only the
algebraic part of the expression for the elementary blocks and hence it can be done in a similar
way for the XXZ spin chain in a magnetic field. The result in this case has a slightly more
complicated determinant of densities and different integration contours but the algebraic part
is the same and contains the partition function Zm({λ}|{ξ}).

A rough asymptotic analysis of the generating function can be performed using a
modification of the saddle point technique introduced in [24] for the emptiness formation
probability. It shows that there is no Gaussian contribution to this correlation function and that
the main order can be written as C exp

(
mβ

2

)
, as it should be, but it is not sufficient to describe

the power-like behaviour of the two-point function. The interesting peculiarity of this saddle
point analysis is the fact that the ‘saddle point density’ here coincides with the ground-state
density ρ(λ).

4. Two-point functions

A similar re-summation can be done for the two-point functions g+−(m) (or for gxx(m) and
gyy(m)) and gzz(m). The function g+−(m) can be written in the following form in terms of
the monodromy matrix elements:

g+−(m) =

m+1∏

k=1

M/2∏
j=1

sinh
(
λj − ξk + i ζ

2

)
sinh

(
λj − ξk − i ζ

2

)

 〈ψg|C

(
ξ1 − i

ζ

2

)

×

 m∏

j=2

(
A

(
ξj − i

ζ

2

)
+ D

(
ξj − i

ζ

2

))
 B

(
ξm+1 − i

ζ

2

)
|ψg〉. (4.1)

To calculate this function one should sum up 2m−1 elementary blocks of the following form:

g+−(m) =

m+1∏

k=1

M/2∏
j=1

sinh
(
λj − ξk + i ζ

2

)
sinh

(
λj − ξk − i ζ

2

)



×
∑

aj =1,2

〈ψg|C
(

ξ1 − i
ζ

2

)
 m∏

j=2

Taj aj

(
ξj − i

ζ

2

)
 B

(
ξm+1 − i

ζ

2

)
|ψg〉,

which can be written as multiple integrals in a factorized form
m+1∏

k=1

M/2∏
j=1

sinh
(
λj − ξk + i ζ

2

)
sinh

(
λj − ξk − i ζ

2

)

 〈ψg|C

(
ξ1 − i

ζ

2

)
Ta2a2

(
ξ2 − i

ζ

2

)

· · · Tamam

(
ξm − i

ζ

2

)
B

(
ξm+1 − i

ζ

2

)
|ψg〉

= 1∏m+1
k>j�1 sinh(ξj − ξk)

∫ ∞

−∞
dλ2 · · ·

∫ ∞

−∞
dλm

∫ ∞

−∞
dλ+

×
∫ ∞

−∞
dλ− detm+1 S({λ2, . . . , λm, λ+, λ−}, {ξj })
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×

 m∏

j>k�2

sinh(λj − ξk + iεj ζ ) sinh(λk − ξj − iεkζ )

sinh(λj − λk + i(εj + εk)ζ )




× sinh
(
λ+ − ξ1 + i ζ

2

)
sinh

(
λ− − ξ1 − i ζ

2

)
sinh(λ+ − λ−)

×
m∏

k=2

sinh
(
λ− − ξk − i ζ

2

)
sinh(λk − ξ1 + iεkζ )

sinh
(
λ− − λk + i

(
εk − 1

2

)
ζ
)

×
m∏

k=2

sinh
(
λ+ − ξk + i ζ

2

)
sinh(λk − ξm+1 − iεkζ )

sinh
(
λ+ − λk + i

(
εk + 1

2

)
ζ
) . (4.2)

The blocks with the same number of operators D
(
εj = − 1

2

)
can be put together

g+−(m) =
m−1∑
s=0

g̃+−(m, s), (4.3)

where

g̃+−(m, s) =

m+1∏

k=1

M/2∏
j=1

sinh
(
λj − ξk + i ζ

2

)
sinh

(
λj − ξk − i ζ

2

)

 ∑

a2+···+am−m+1=s

〈ψg|C

×
(

ξ1 − i
ζ

2

)
Ta2a2

(
ξ1 − i

ζ

2

)
· · · Tamam

(
ξm − i

ζ

2

)
B

(
ξm+1 − i

ζ

2

)
|ψg〉. (4.4)

It is easy to see that in all the terms of this sum written as multiple integrals the determinant
of densities and all the factors containing λ+ and λ− are the same. Thus, to obtain the
corresponding algebraic part it is sufficient to take the sum over all possible permutations of
λ2, . . . , λm of the product

m∏
j>k�2

sinh(λj − ξk + iεj ζ ) sinh(λk − ξj − iεkζ )

sinh(λj − λk + i(εj + εk)ζ )
.

This sum has exactly the same form as the corresponding term for the generating function.
Using exactly the same arguments as in the previous section, we obtain for the contributions
to the two-point function:

g̃+−(m, s) = 1

s!(m − 1 − s)! sinm−1 ζ

×
∏

m+1�k>j�1

1

sinh(ξj − ξk)

∫ ∞

−∞
dλ2 · · ·

∫ ∞

−∞
dλm

∫ ∞

−∞
dλ+

∫ ∞

−∞
dλ−

×
(

s+1∏
k=2

sinh
(
λ− − ξk − i ζ

2

)
sinh

(
λk − ξ1 − i ζ

2

)
sinh(λ− − λk − iζ )

)

×
(

m∏
k=s+2

sinh
(
λ− − ξk − i ζ

2

)
sinh

(
λk − ξ1 + i ζ

2

)
sinh(λ− − λk)

)

×
(

s+1∏
k=2

sinh
(
λ+ − ξk + i ζ

2

)
sinh

(
λk − ξm+1 + i ζ

2

)
sinh(λ+ − λk)

)

×
(

m∏
k=s+2

sinh
(
λ+ − ξk + i ζ

2

)
sinh

(
λk − ξm+1 − i ζ

2

)
sinh(λ+ − λk + iζ )

)
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× sinh
(
λ+ − ξ1 + i ζ

2

)
sinh

(
λ− − ξ1 − i ζ

2

)
sinh(λ+ − λ−)

· �s
m−1(λ2, . . . , λm)

×Zm−1({λ2, . . . , λm}|{ξ2, . . . , ξm})
× detm+1S({λ2, . . . , λm, λ−, λ+}, {ξ1, . . . , ξm+1}). (4.5)

This result is slightly more complicated but very similar to the result for the generating
function.

One should note that a very similar formula can be written for the correlation function
gzz(m) directly (without any use of the generating function). This function can be written in
the following form in terms of the monodromy matrix elements:

gzz(m) = −1 + 4


m+1∏

k=1

M/2∏
j=1

sinh
(
λj − ξk + i ζ

2

)
sinh

(
λj − ξk − i ζ

2

)



×〈ψg|D
(

ξ1 − i
ζ

2

)
 m∏

j=2

(
A

(
ξj − i

ζ

2

)
+ D

(
ξj − i

ζ

2

))
D

(
ξm+1 − i

ζ

2

)
|ψg〉.

(4.6)

To calculate this function one should sum up 2m−1 elementary blocks of the following form:

gzz(m) = −1 + 4


m+1∏

k=1

M/2∏
j=1

sinh
(
λj − ξk + i ζ

2

)
sinh

(
λj − ξk − i ζ

2

)



×
∑

aj =1,2

〈ψg|D
(

ξ1 − i
ζ

2

) 
 m∏

j=2

Taj aj

(
ξj − i

ζ

2

)
 D

(
ξm+1 − i

ζ

2

)
|ψg〉.

As usual we put together the blocks with the same number of operators D,

gzz(m) = −1 + 4
m−1∑
s=0

g̃DD(m, s), (4.7)

where

g̃DD(m, s) =

m+1∏

k=1

M/2∏
j=1

sinh
(
λj − ξk + i ζ

2

)
sinh

(
λj − ξk − i ζ

2

)

 ∑

a2+···+am−m+1=s

× 〈ψg|D
(

ξ1 − i
ζ

2

)
Ta2a2

(
ξ1 − i

ζ

2

)
· · · Tamam

(
ξm − i

ζ

2

)
D

(
ξm+1 − i

ζ

2

)
|ψg〉.

(4.8)

Using exactly the same arguments as for the function g+−(m) we obtain for the
contributions to the two-point function:

g̃DD(m, s) = 1

s!(m − 1 − s)! sinm−1 ζ

×
∏

m+1�k>j�1

1

sinh(ξj − ξk)

∫ ∞

−∞
dλ1

∫ ∞

−∞
dλ2 · · ·

∫ ∞

−∞
dλm

∫ ∞

−∞
dλm+1

×
(

s+1∏
k=2

sinh
(
λ1 − ξk + i ζ

2

)
sinh

(
λk − ξ1 − i ζ

2

)
sinh(λk − λ1 − iζ )

)
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×
(

m∏
k=s+2

sinh
(
λ1 − ξk + i ζ

2

)
sinh

(
λk − ξ1 + i ζ

2

)
sinh(λk − λ1)

)

×
(

s+1∏
k=2

sinh(λm+1 − ξk − i ζ

2 ) sinh
(
λk − ξm+1 + i ζ

2

)
sinh(λm+1 − λk − iζ )

)

×
(

m∏
k=s+2

sinh
(
λm+1 − ξk − i ζ

2

)
sinh

(
λk − ξm+1 − i ζ

2

)
sinh(λm+1 − λk)

)

× sinh
(
λm+1 − ξ1 − i ζ

2

)
sinh

(
λ1 − ξm+1 + i ζ

2

)
sinh(λm+1 − λ1 − iζ )

· �s
m−1(λ2, . . . , λm)

×Zm−1({λ2, . . . , λm}|{ξ2, . . . , ξm})
× detm+1S({λ1, λ2, . . . , λm, λm+1}, {ξ1, . . . , ξm+1}). (4.9)

5. Further re-summations

In this section, we show how one can proceed to a complete re-summation of terms and reduce
the result for the two-point correlation functions to only one term (written again as a multiple
integral). To do it one should note that all the terms in the sum (3.5) have a very similar
structure. Extracting the common denominator, one can obtain the following sum for the
generating function:

Qm(β) =
m∑

s=0

esβ

s!(m − s)! sinm ζ

∏
j<k

1

sinh(ξj − ξk)

∫ ∞

−∞
dλ1 · · ·

∫ ∞

−∞
dλm

×
∏m

k=1

∏m
j=1 sinh

(
λj − ξk + i ζ

2

)
sinh

(
λj − ξk − i ζ

2

)
∏

j>k sinh(λj − λk) sinh(λj − λk + iζ ) sinh(λj − λk − iζ )

×Zm({λ}|{ξ}) detmS({λ}, {ξ})Hs({λ}|{ξ})H̄ s({λ}|{ξ}), (5.1)

where H̄ s means complex conjugation and the function Hs({λ}|{ξ}) is defined as

Hs({λ}|{ξ})

=
∏s

j=1

∏m
k=s+1 sinh(λj − λk + iζ )

∏
1�j<k�s sinh(λj − λk)

∏
s+1�j<k�m sinh(λj − λk)∏m

k=1

( ∏s
j=1 sinh

(
λj − ξk − i ζ

2

)∏m
j=s+1 sinh

(
λj − ξk + i ζ

2

)) .

(5.2)

It is easy to see that this function can be written as a Cauchy determinant

Hs({λ}|{ξ}) =
∏
j<k

1

sinh(ξk − ξj )
detH(s),

H(s)
jk = 1

sinh
(
λj − ξk − i ζ

2

) , j � s,

H(s)
jk = 1

sinh
(
λj − ξk + i ζ

2

) , j > s.

The sum over s in (5.1) can be taken under the integrals. Here, we separated the terms which
depend on s:

m∑
s=0

eβs

s!(m − s)!
detH(s) det H̄(s).
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This sum can be simplified if one introduce some auxiliary contour integrals:
m∑

s=0

eβs

s!(m − s)!
detH(s) det H̄(s) = 1

m!

∮
dz1

2iπ
· · ·

∮
dzm

2iπ

× exp


 β

iζ

m∑
j=1

(
zj + i

ζ

2

)



 m∏

j=1

sinh 2zj

sinh
(
zj − i ζ

2

)
sinh

(
zj + i ζ

2

)

 detF+ detF−,

where

F±
jk = 1

sinh(λj ± zj − ξk)
,

and contours are chosen in such a way that the points zj = ±i ζ

2 are inside the contours and
all the poles at the points λj ± zj − ξk = 0 are outside. Thus, we can represent the generating
function as a single term but the number of integrals is now 2m:

Qm(β) = 1

m! sinm ζ

∏
j<k

1

sinh3(ξj − ξk)

∫ ∞

−∞
dλ1 · · ·

∫ ∞

−∞
dλm

∮
dz1

2iπ
· · ·

∮
dzm

2iπ
Zm({λ}|{ξ})

×
∏m

k=1

∏m
j=1 sinh

(
λj − ξk + i ζ

2

)
sinh

(
λj − ξk − i ζ

2

)
∏

j>k sinh(λj − λk) sinh(λj − λk + iζ ) sinh(λj − λk − iζ )
detmS({λ}, {ξ})

×

 m∏

j=1

exp
(

β

iζ

(
zj + i ζ

2

))
sinh 2zj

sinh
(
zj − i ζ

2

)
sinh

(
zj + i ζ

2

)

 detF+ detF−. (5.3)

Now, using the symmetry of the expression under the integral with respect to permutations
of pairs (λj , zj ), we can replace one of the determinants detF± by a product of its diagonal
terms. It permits us in particular to separate the variables zj and hence to integrate over them.
It is easy to see that it leads to the following final result for the generating function:

Qm(β) = 1

sinm ζ

∏
j<k

1

sinh3(ξj − ξk)

∫ ∞

−∞
dλ1 · · ·

∫ ∞

−∞
dλmZm({λ}|{ξ}) detmS({λ}, {ξ})

×
∏m

k=1

∏m
j=1 sinh

(
λj − ξk + i ζ

2

)
sinh

(
λj − ξk − i ζ

2

)
∏

j>k sinh(λj − λk) sinh(λj − λk + iζ ) sinh(λj − λk − iζ )
detmG, (5.4)

where the m × m matrix G is defined as

Gjk = eβ

sinh
(
λj − ξk + i ζ

2

)
sinh

(
λj − ξj − i ζ

2

) +
1

sinh
(
λj − ξk − i ζ

2

)
sinh

(
λj − ξj + i ζ

2

) .

(5.5)

Similar results can be obtained for the two-point functions. This is the most compact formula
for the generating function (we reduced the number of terms from 2m to one). However,
we think that the formulae obtained in the two previous sections are more convenient for
the asymptotic analysis as they permit a natural homogeneous limit (which is not the case
of (5.4)).

6. Free-fermion point

As the first application and check of this new re-summation formula, we consider the free-
fermion point

(
ζ = π

2

)
. Of course the representations for the correlation functions in this

point have already been obtained by different methods, but the formulae (3.13) and (4.5) give
a simple and elegant way to get these explicit results.
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6.1. Generating function

We calculate the generating function

Qm(β) ≡ 〈ψg| exp{βQ1,m}|ψg〉, Q1,m =
m∑

j=1

1

2

(
1 − σ z

j

)
.

This function can be written as

Qm(β) =
m∑

s=0

esβFs(m), (6.1)

where contributions Fs(m) are given by (3.13).
Taking into account that ζ = π

2 all the determinants can be calculated. In the homogeneous
limit, one obtains the following multiple integral representation:

Fs(m) = 2m2−m

πms!(m − s)!

∫ ∞

−∞
dλ1 · · ·

∫ ∞

−∞
dλm

∏
1<j<k�s

sinh2(λj − λk)

×
∏

s<j<k�m

sinh2(λj − λk)

s∏
j=1

m∏
k=s+1

cosh2(λj − λk)

m∏
j=1

cosh−m 2λj . (6.2)

After changing variables

λj = 1
2 log(tan pj ),

we obtain a much simpler representation:

Fs(m) = 2m2−m

πms!(m − s)!

∫ π
2

0
dp1 · · ·

∫ π
2

0
dpm

∏
j>k

sin2(εjpj − εkpk), (6.3)

where εj = 1 for j � s and εj = −1 for j > s. The expression under the integral can be
rewritten as a product of two Vandermonde determinants:

∏
j>k

sin2(εjpj − εkpk) = 2m−m2

∣∣∣∣∣∣
∏
j>k

(e2iεj pj − e2iεkpk )

∣∣∣∣∣∣
2

= 2m−m2
det V ({εp}) det V ∗({εp}),

Vjk({p}) = e2i(k−1)pj ,

where the star means Hermitian conjugation. The product of these two determinants can be
calculated as the determinant of the product of two matrices:

det V ({εp}) det V ∗({εp}) = det (V ∗({εp})V ({εp}))

(V ∗V )kn =
m∑

j=1

e2i(k−n)εj pj .

Now we should take into account that we integrate this determinant. It can be written as a sum
over permutations,

Fs(m) = 1

πms!(m − s)!

∫ π
2

0
dp1 · · ·

∫ π
2

0
dpm

∑
σ

det W(σ, s, {p}),

where the matrix W is defined as

Wkn(σ, s, {p}) = e2i(k−n)εσ(n)pσ(n) .
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As we integrate over all the variables p, permutations of the variables with the same value of
the parameter ε do not change the integration result and thus the sum over permutations can
be replaced by a sum over the partitions of the set {p} into two subsets {p+} and {p−}, with
the number of elements in the first one being s,

Fs(m) = 1

πm

∫ π
2

0
dp1 · · ·

∫ π
2

0
dpm

∑
{p}={p+}∪{p−}

det W̃ ({p+}, {p−}).

Here, the matrix W̃ ({p+}, {p−}) is defined as

W̃kn({p+}, {p−}) = e2i(k−n)εnp
εn
n ,

εn being + or −.
Now considering the entire sum over s (6.1), one can easily note that it can be rewritten

as a determinant of a sum of two matrices:

Qm(β) = 1

πm

∫ π
2

0
dp1 · · ·

∫ π
2

0
dpm detmU(β, {p}),

Ukn(β, {p}) = e2i(k−n)pn + eβe2i(n−k)pn .

(6.4)

It is now possible to calculate all the integrals and to write the final result as a determinant:

Qm(β) = detmT (β),

Tkn(β) = δkn

eβ + 1

2
+ (1 − δkn)(1 − eβ)

1 − (−1)n−k

2iπ(n − k)
.

(6.5)

From this formula, one can easily obtain the well-known result for the two-point function
gzz(m): 〈

σ z
1 σ z

m+1

〉 = 2

π2m2
((−1)m − 1). (6.6)

The emptiness formation probability [33] comes directly from (6.5) by taking the limit
β → −∞.

6.2. Two-point functions

The two-point functions
〈
σ +

1 σ−
m+1

〉
and

〈
σ−

1 σ +
m+1

〉
can be calculated in a similar way in the

free-fermion point.
First of all a re-summation formula can be obtained for these functions almost in the same

way as for the generating function. We can consider even a more general function:

g+−(m, β) = 〈
σ +

1 exp(βQ2,m)σ−
m+1

〉
,

where Q2,m = ∑m
j=2

1
2

(
1 − σ z

j

)
, which also includes the correlation function of fermionic

fields. After re-summation it can be represented as

g+−(m, β) =
m−1∑
s=0

esβg+−
s (m), (6.7)

where the contributions g+−
s (m) are given by (4.5). This general re-summation formula can

be simplified in the free-fermion case:

g+−
s (m) = 2m2+1(−1)s+1

im−1πm+1s!(m − 1 − s)!

∫ ∞

−∞
dλ2 · · ·

∫ ∞

−∞
dλm

∫ ∞

−∞
dλ+

∫ ∞

−∞
dλ−

×
∏

2<j<k�s+1 sinh2(λj − λk)
∏

s+1<j<k�m sinh2(λj − λk)
∏s+1

j=1

∏m
k=s+2 cosh2(λj − λk)∏m

j=2 coshm 2λj
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× cosh(λ+ − λ−)
∏s+1

j=2 sinh(λ+ − λj ) cosh(λ−−λj )
∏m

j=s+2 cosh(λ+ − λj ) sinh(λ− − λj )

coshm+1 2λ+ coshm+1 2λ−

× sinhm
(
λ+ − i

π

4

)
sinhm

(
λ− + i

π

4

)
. (6.8)

Changing variables as in the previous case

λj = 1
2 log(tan pj ),

we obtain

g+−
s (m) = 2m2−m+1(−1)s+1

im−1πm+1s!(m − 1 − s)!

∫ π
2

0
dp2 · · ·

∫ π
2

0
dpm

∫ π
2

0
dp+

∫ π
2

0
dp− ei(p+−p−)m

×
∏

m�j>k>1

sin2(εjpj − εkpk)

m∏
j=2

(sin(p+ − εjpj ) sin(p− + εjpj )) sin(p+ + p−),

(6.9)

where εj = 1 for j � s + 1 and εj = −1 for j > s + 1. This expression can also be rewritten
as a product of two Vandermonde determinants, but now the matrices have different sizes:

g+−
s (m) = (−1)s

imπm+1s!(m − 1 − s)!

∫ π
2

0
dp2 · · ·

∫ π
2

0
dpm

∫ π
2

0
dp+

∫ π
2

0
dp− e−2i

∑m
j=2 εj pj

× detm+1V (m + 1, {p+,−p−, ε2p2, . . . , εmpm})
× detm−1V

∗(m − 1{ε2p2, . . . , εmpm}),
Vjk = e2i(k−1)εj pj .

The product of these two determinants can be again rewritten as a determinant of a product of
two matrices if we add two rows and two columns to the second one:

Ṽ ∗
1j (m + 1, {p}) = Ṽ ∗

j1(m + 1, {p}) = δ1j ,

Ṽ ∗
2j (m + 1, {p}) = Ṽ ∗

j2(m + 1, {p}) = δ2j ,

Ṽ ∗
kj (m + 1, {p}) = V ∗

k−2j−2(m − 1, {p}), k, j > 2.

Now we can take the product of these two determinants and proceed with the sum over s in
the same way as for the generating function:

g+−(m, β) = 1

imπm+1

∫ π
2

0
dp2 · · ·

∫ π
2

0
dpm

∫ π
2

0
dp+

∫ π
2

0
dp− detm+1Ũ (β, {p}),

Ũ1n(β, {p}) = e2i(n−1)p+ ,

Ũ2n(β, {p}) = e−2i(n−1)p− ,

Ukn(β, {p}) = e2i(k−n−1)pn − eβ e2i(n−k+1)pn .

(6.10)

Now all the integrals can be calculated. For the two-point function (β = 0), we get

g+−(m) = (−1)m

πm+1
detm+1T

−+(m), T −+
11 = T −+

21 = π

2
,

T −+
1n = −T −+

2n = 1 + (−1)n

2(n − 1)
, T −+

kn = 1 + (−1)k−n

(k − n − 1)
.

(6.11)
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This determinant can be easily computed and gives a formula obtained by Wu in [7] (a more
general formula was obtained by McCoy [8]):

〈
σ +

1 σ−
m+1

〉 = (−1)m

2

[ m
2 ]∏

k=1

�2(k)

�
(
k − 1

2

)
�

(
k + 1

2

) [ m+1
2 ]∏

k=1

�2(k)

�
(
k − 1

2

)
�

(
k + 1

2

) . (6.12)

The asymptotic behaviour of such a product was also obtained in [7] using the technique
introduced in [34]:〈
σ +

1 σ−
m+1

〉 = (−1)m√
2m

exp

{
1

2

∫ ∞

0

dt

t

[
e−4t − 1

cosh2 t

]} (
1 − (−1)m

8m2
+ O(m−4)

)
. (6.13)
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